Decentralized Collision-Free Control of Multiple Robots in 2D and 3D Spaces
نویسنده
چکیده
Decentralized control of robots has attracted huge research interests. However, some of the research used unrealistic assumptions without collision avoidance. This report focuses on the collision-free control for multiple robots in both complete coverage and search tasks in 2D and 3D areas which are arbitrary unknown. All algorithms are decentralized as robots have limited abilities and they are mathematically proved. The report starts with the grid selection in the two tasks. Grid patterns simplify the representation of the area and robots only need to move straightly between neighbor vertices. For the 100% complete 2D coverage, the equilateral triangular grid is proposed. For the complete coverage ignoring the boundary effect, the grid with the fewest vertices is calculated in every situation for both 2D and 3D areas. The second part is for the complete coverage in 2D and 3D areas. A decentralized collision-free algorithm with the above selected grid is presented driving robots to sections which are furthest from the reference point. The area can be static or expanding, and the algorithm is simulated in MATLAB. Thirdly, three grid-based decentralized random algorithms with collision avoidance are provided to search targets in 2D or 3D areas. The number of targets can be known or unknown. In the first algorithm, robots choose vacant neighbors randomly with priorities on unvisited ones while the second one adds the repulsive force to disperse robots if they are close. In the third algorithm, if surrounded by visited vertices, the robot will use the breadth-first search algorithm to go to one of the nearest unvisited vertices via the grid. The second search algorithm is verified on Pioneer 3-DX robots. The general way to generate the formula to estimate the search time is demonstrated. Algorithms are compared with five other algorithms in MATLAB to show their effectiveness.
منابع مشابه
Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance
We present a control framework for achieving encirclement of a target moving in 3D using a multi-robot system. Three variations of a basic control strategy are proposed for different versions of the encirclement problem, and their effectiveness is formally established. An extension ensuring maintenance of a safe inter-robot distance is also discussed. The proposed framework is fully decentraliz...
متن کاملTowards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning
Developing a safe and efficient collision avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generate its paths without observing other robots’ states and intents. While other distributed multirobot collision avoidance systems exist, they often require extracting agent-level features to plan a local collision-free action, which can be computation...
متن کاملDecentralized & prioritized Navigation and Collision Avoidance for Multiple Mobile Robots
We present an algorithm for decentralised navigation of multiple mobile robots. Completely decentralised Navigation functions build a potential field for each robot that is employed in a feedback control law. The potential field incorporates limited sensing and explicit prioritisation. A non-circular sensing area creates asymmetrical sensing by reducing the influence of robots and obstacles beh...
متن کاملReciprocal Collision Avoidance for Quadrotor Helicopters Using LQR-Obstacles
In this paper we present a formal approach to reciprocal collision avoidance for multiple mobile robots sharing a common 2-D or 3-D workspace whose dynamics are subject to linear differential constraints. Our approach defines a protocol for robots to select their control input independently (i.e. without coordination with other robots) while guaranteeing collision-free motion for all robots, as...
متن کاملRoundabout Collision Avoidance for Multiple Robots based on Minimum Enclosing Rectangle (Demonstration)
This paper describes a novel and dynamic rectangular roundabout (‘rectabout’) collision avoidance system based on Minimum Enclosing Rectangle (MER) paradigm. The approach is fully decentralized maneuver based on equal priority and involves local views. This maneuver is calculated by each robot involved in the possible collision course separately through its own local view. The virtual MER-based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.05843 شماره
صفحات -
تاریخ انتشار 2017